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ABSTRACT 

Transverse isotropy with a horizontal axis of symmetry (HTI) is the simplest az- 
imuthally anisotropic model used to describe fractured reservoirs that contain parallel 

vertical cracks. Here, I present an exact equation for normal-moveout (NMO) veloc- 

ities from horizontal reflectors in HTI media and apply it to invert moveout data 

for the anisotropic parameters. The azimuthal dependence of P-wave NMO velocity, 

that can be obtained from 3—D surveys, provides enough information to determine 

the principal direction of the anisotropy (crack orientation) and the P-wave verti- 
cal velocity, as well as an effective anisotropic parameter equivalent to Thomsen’s 

coefficient 6. 

The parameter of fracture systems of most interest in exploration is the crack 

density that is usually estimated through the traveltimes or reflection amplitudes of 

the split shear waves at vertical incidence. The formalism developed here makes it 

possible to obtain the crack density using the NMO velocities of P and shear waves 

from horizontal reflectors. Furthermore, the crack density can be estimated just from 

the P-wave NMO velocity in the special case of the vanishing parameter € corre- 

sponding to thin cracks and negligible equant porosity. Also, P-wave moveout alone 

is sufficient to constrain the crack density if either dipping events are available or the 

velocity in the symmetry direction is known. For a more stable inversion, P-wave 

NMO velocities can be combined with the azimuthal dependence of amplitude varia- 
tion with offset (AVO) response and the results of shear-wave polarization analysis. 

Wave propagation in the symmetry plane of HTI media that contains the sym- 

metry axis is described by the same equations as for vertical transverse isotropy 

(VTI media). Although the parameters of the “equivalent” VTI medium are ex- 
tremely uncommon (e.g., € < 0), time-related processing in this symmetry plane is 

governed by the same two effective parameters as for vertical transverse isotropy. The 

anisotropic coefficients recovered from moveout data can also be used for processing 

in off-symmetry planes that requires a more elaborate treatment. 

The approach used here to derive the NMO equation for horizontal transverse 

isotropy can be generalized for horizontal and dipping reflectors in more complicated 
azimuthally anisotropic models including off-symmetry planes in orthorhombic media.
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INTRODUCTION 

In horizontally-layered, isotropic media, normal-moveout (NMO) velocity of re- 

flected waves is equal to the root-mean-square of the velocities in each layer. Conven- 

tional velocity analysis takes advantage of this simple relation by obtaining interval 

velocities from the NMO velocity via Dix (1955) formula. If the medium is anisotropic, 
normal-moveout velocity even in a single layer is no longer equal to the vertical veloc- 

ity. The difference between the vertical and moveout velocity in anisotropic forma- 

tions, such as shales, causes errors in time-to-depth conversion (Banik, 1984). On the 
other hand, inversion of moveout velocities can provide estimates of the anisotropic 

coefficients that can be used in seismic processing, amplitude variation with offset 

(AVO) analysis, and lithology discrimination. 

Analytic expressions for NMO velocities from horizontal reflectors are well known 

for transversely isotropic media with a vertical symmetry axis, or vertical transverse 

isotropy (VTI) (e.g., Lyakhovitsky and Nevsky 1971; Hake et al., 1984; Thomsen 

1986). Using Thomsen’s (1986) notation, the NMO velocities of the P-, SV-, and 
SH-waves ! in a single VTI layer can be represented as 

Vamo [P—wave] = Vpvert ¥1 + 26) , (1) 

Vamo [SV —wave] = Vovere V1 + 20) , (2) 

Vamo [SH —wave] = Vovert V1 +2 ; (3) 

with 
Ve vert \” o™) = (7) (eM) — 6), (4) 
Vovert 

where Vpyer: and Vgver: are the vertical velocities of the P- and S—waves respectively, 

eY), 6), and ) are the Thomsen’s anisotropy parameters for vertical transverse 
isotropy, and oY) is the effective parameter introduced by Tsvankin and Thomsen 

(1994) to describe SV—wave propagation. Equations (1)—(3) are valid for VTI media 
with arbitrary strength of the anisotropy. 

As discussed by Tsvankin and Thomsen (1995), the NMO velocities from hori- 
zontal reflectors in VTI media are not sufficient to recover the vertical velocities and 
anisotropic parameters, even if all three waves are recorded. However, if some ad- 

ditional information is available (such as the reflector depth or one of the vertical 
velocities), equations (1)—(3) make it possible to obtain the anisotropic coefficients. 

Another practically important anisotropic model is transversely isotropic media 

with a horizontal symmetry axis, or horizontal transverse isotropy (HTI). The most 

common physical reason for HTI symmetry is a system of parallel vertical cracks 
  

1T will omit the qualifiers in “quasi- P-wave” and “quasi-S V—wave.” 
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(fractures) embedded in an isotropic matrix (Crampin, 1985; Thomsen, 1988). It 
should be emphasized that while modeling and processing of reflection data are more 

complicated for horizontal transverse isotropy than for VTI media, the azimuthal 

dependence of moveout velocities and amplitudes in HTI models provides additional 

information for the inversion procedure. Obviously, this inversion is impossible with- 

out relating the attributes of the reflected waves to the anisotropic parameters. 

Thomsen (1988) presented the weak-anisotropy approximation for NMO velocities 

of P— and S—waves from a horizontal reflector in the symmetry plane of HTI media 

that contains the symmetry axis. More general nonhyperbolic (“skewed”) moveout 

equations for pure modes both in the symmetry and off-symmetry planes were given 

by Sena (1991); his results, however, are valid only for weak anisotropy and hori- 

zontal reflectors. A weak-anisotropy formalism similar to that by Sena (1991) was 
employed by Li and Crampin (1993) to study the moveout from horizontal reflectors 

in transversely isotropic and orthorhombic media. 

Here, I present an exact equation for normal-moveout velocities of pure modes 

valid for any orientation of the survey line over an HTI layer. If the anisotropy 

is caused by vertical cracks, P-wave moveout data can be used to find the crack 

orientation and estimate the crack density — an important parameter in reservoir 

characterization. It is also shown that time processing of P-wave data in the plane 

that contains the symmetry axis is governed by the same two effective parameters 

that Alkhalifah and Tsvankin (1995) introduced for vertical transverse isotropy. 

ANISOTROPY PARAMETERS FOR HTI MEDIA 

Horizontal transverse isotropy can be characterized by the stiffness matrix ¢;; or 

Thomsen’s (1986) parameters in the rotated coordinate system with the x3 axis point- 

ing in the symmetry direction. The relation between the Thomsen parameters and 

the stiffness coefficients in this coordinate frame is the same as for vertical transverse 
isotropy: 

C33 
Vpo = ,/— , 5 PO y , (5) 

C55 
Vso = ,/—, 6 30 i , (6) 

  

C11 — C33 
=o 7 € Joa (7) 

6= (ci3 + ¢55)” — (¢33 — ¢55)? (8) 

2¢33(c33 — C55) 

C66 — C44 
PEs 9 Y Jou (9) 
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where p is the density. The parameters Vpp and Vso, which in VTI models corrggpond 

to the vertical P and S—wave velocities respectively, in our case represent the P and 

S-wave velocities in the symmetry (horizontal) direction. . 

Two vertical symmetry planes of HTI media, shown in Figure 1, will be refetred to 

as the “isotropy plane” (the plane normal to the symmetry axis) and the “symmetry 

plane” (the plane that contains the symmetry axis). Note that the wave propagation 

in the isotropy plane can be described by the isotropic equations because the velocities 

of all three waves do not change with direction. As we will see later on, the velbcities 

and polarizations in the symmetry plane can be found by analogy with VTI media. 

The shear waves will be denoted as “S'!!” and “S+,” with the S!l—wave polarized in 

the isotropy plane and the S+—wave polarized in the plane formed by the synametry 

axis and the ray. The form of the superscripts is explained by the fact that in HTI 

media due to parallel vertical cracks the polarization vector of Sl is parallel to the 

crack planes, while the wave S+ at vertical incidence is polarized normal to the cracks. 

In the symmetry plane the S+—wave represents an in-plane (SV) motion while the 
S'l-wave is polarized in the direction orthogonal to the plane and may be called the 

SH-wave. Therefore, for this plane the S+— and S!l—waves can be denoted as the SV— 

and 5S H—waves, respectively. However, the polarizations of the shear waves recorded 

in any other plane do not conform to this simple rule. For instance, in the isotropy 

plane the particle motion of the wave that we refer to as S!! will be confined to the 

incidence plane, while the S+—wave is polarized parallel to the symmetry axis and, 

therefore, orthogonally to the incidence plane. The wave S'! is often called the “fast” 

shear wave since at vertical incidence and in the isotropy plane it propagates faster 

than St. 

   symmetry 
axis 

    

Fic. 1. Two vertical symmetry planes in HTI media. Wave propagation in the plane 
that contains the symmetry axis can be described by analogy with vertical transverse 
isotropy. In the plane normal to the symmetry axis (“isotropy plane”), velocity is 
independent of propagation angle.



Tsvankin Moveout velocities for HTI media 

The slowness surface of the wave S+ can be obtained from the slowness surface of 

the SV—wave for vertical transverse isotropy by a 90-degree rotation; the same is true 

for the S'|_ and SH-waves. Hence, the velocities and traveltimes of the waves P and 

S+ for horizontal transverse isotropy are determined by the same four coefficients as 

for P — SV-—waves in VTI media (Vpo, Vso, €, and 6). Furthermore, Thomsen notation 
makes it possible to reduce the number of parameters that control P-wave kinematic 

signatures from four to three: P-wave velocities and traveltimes depend mostly just 

on Vpo, €, and 6 (Tsvankin and Thomsen, 1994; Tsvankin, 1995b). It should also be 

mentioned that the parameters introduced by equations (5)—(9) are convenient to use 
in TI media with any magnitude of velocity variations, not just for weak transverse 

isotropy (for a detailed discussion, see Tsvankin, 1995b). 

EQUIVALENCE BETWEEN VERTICAL AND HORIZONTAL 
TRANSVERSE ISOTROPY 

The results of moveout analysis for vertical transverse isotropy can be extended 

to the vertical plane that contains the symmetry axis in HTI media (we call it the 

“symmetry plane”) by using the equivalence between vertical and horizontal trans- 

verse isotropy. By the “equivalent” VTI model I will mean the VTI medium that 

can be used to describe velocities, traveltimes, and polarizations of body waves in 

the symmetry plane of the original HTI model. To obtain the parameters of this 

equivalent model, it is sufficient to examine the Kelvin-Christoffel matrix Gj, that 
determines (along with the density) the velocities and polarization vectors of plane 

waves. Let us find G;, for wave propagation in the [x,, 23] plane of a transversely 
isotropic medium with the axis of symmetry pointing in the x, direction (Figure 2). 

We will denote the stiffness tensor for this model by of), to distinguish it from the 

tensor c;;,; that corresponds to the rotated coordinate system with the x3 axis co- 

inciding with the symmetry direction [see equations (5)—(9)]. The transformation of 
one stiffness tensor into the other can be accomplished by interchanging the indices 1 

and 3. Using the matrix notation (Voigt recipe), we find the following transformation 
rule for the independent stiffness components: 

ely) = C33; fy = C1; fy) = C13; ch) = C55, (10) 

and y y 

cl) = 66; ch) = C44. (11) 

The Kelvin-Christoffel matrix is given by 

— lV) 
Gik = Cijer™Mj™M , 

where 7 is the slowness vector that we consider confined to the [z,, 23] plane. The 
non-zero components of the Kelvin-Christoffel matrix are expressed through the elas- 

tic constants of) as
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X 

XA 

L 
3 Slowness 

a surface 

< 

x 
” 

>   
  

Symmetry axis (HTI) X4 

Fic. 2. Symmetry plane (21, x3] of a transversely isotropic medium with the symmetry 
axis pointing either in the 13 (VTI) or in the x; (HTI) direction. The slowness surface 
in the symmetry plane remains the same if we replace the HT] medium with the 
equivalent VTI model.



Tsvankin Moveout velocities for HTI media 

Gi = chy mi + cf) m3, (12) 

G33 = cf m3 + cm? ’ (13) 

Gis = (LP + AD) mums, (14) 

Goo = cfg) mj + cfm}. (15) 

It is easy to verify that equations (12) — (15) are identical to the corresponding 
expressions for Gj, in the [x,, 23] plane of a medium with the symmetry axis pointing 

in the x3 direction. This means that wave propagation in the symmetry plane of HTI 

media that contains the symmetry axis can be studied using the equations for vertical 

transverse isotropy. 

The kinematic properties and polarizations of P — S+—waves are fully determined 

by the components G11, G33, and G13, whereas the wave S!! is dependent only on Goo. 

Therefore, the velocities and traveltimes of the waves P and S* in the [x1, x3] plane 

will be identical for the symmetry axis pointing either in the x; (HTI) or z3 (VTI) 

direction, provided the stiffnesses c{\) , fy), oy) and cl) [equation (10)] are the same 
for both models. Likewise, the S!!—wave velocity would be the same in the [x1, £3] 

plane of VTI and HTI media if cf) and c{¥) [equation (11)] are fixed. Note that if the 
medium is horizontally transversely isotropic with a symmetry axis pointing in the 

z, direction, cf) from equations (10) and (11) do not specify the same VTI model (it 

is clear from the fact that ely) # cW)), However, since P — S+- and S'l—-waves in the 
symmetry plane are decoupled, we can just use two different VTI models to describe 

P—§$+ and S!l pro ‘opagation. One VTI model, designed for P — S+ waves, will be 
characterized by cf ' chy) , cy) and of), while the other (“S!!”) model will include 

of) and chy) 

Thus, wave propagation in the plane that contains the symmetry axis in HTI 

media can be described by the known VTI equations using the constants cy), or, 

alternatively, by the corresponding Thomsen parameters that we denote eV), 6), 
and ¥); 

(V) {V) 
v) — “11 _— © 

  

Vv v Vv 5(v) = (els) + 55)? - “i 5)? 
28) (17)
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Vv Vv 

(v) = 608 = C4) (18) 
7 acl) 

These coefficients of the equivalent VTI medium can be expressed through the 

original Thomsen parameters given by equations (7), (8), and (9) using equations (10) 
and (11): 

  

  

(vy ___€ 1 € 14 De? (19) 

6—2(1+é ' 
6) = $= 2 (145) i) , (20) (1+ 2e) (1+ %) 

(v) _ ____7 7 142)’ (21) 

where 

f=1- Voo/ Vio (22) 

is a useful parameter introduced by Tsvankin (1995b); Vpo and Vgo are the velocities 

in the symmetry (horizontal) direction. 

The S+—wave coefficient o should be transformed according to 

  

o 
a) = 3: (23) 

Similarly, the P—wave vertical velocity used in VTI equations can be represented 

as 

Vevert = V3 = Veo v1+ 2€ , (24) 

and the shear-wave vertical velocities are given by 

VoLvert = Vso ’ (25) 

Voilvert = Vso V 1+ 27 : (26) 

As discussed above, the difference between the vertical velocities of the waves S+ and 

Sl makes it necessary to consider two different equivalent VTI models for P — S1 

and Sl! propagation. 

Note that if the vertical and horizontal P-wave velocities are equal to each other 

(« = 0), the phase and group velocities of the P- and S+—waves in the symmetry 
plane are symmetric with respect to the 45-degree angle. As a result, in this case 
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P — S+ velocities do not change if we rotate the symmetry axis by 90 degrees, and 

5) is equal to 6 (e) = € = 0). The same holds for the S!l—wave if 7 = 0, but this is 
the trivial case of a medium with no S!l—wave velocity anisotropy. 

The above expressions can be applied to describe wave propagation in HTI me- 

dia using the known equations for vertical transverse isotropy, but in terms of the 

“generic” Thomsen parameters of the HTI model. Although the analogy between 

HTI and VTI media is limited to the single symmetry plane that contains the sym- 

metry axis, the anisotropic coefficients of the equivalent VTI medium turn out to be 

responsible for the azimuthal dependence of NMO velocity as well. 

NORMAL MOVEOUT FROM A HORIZONTAL REFLECTOR 

NMO velocity in symmetry planes 

First, let us consider the influence of anisotropy on the normal-moveout velocity 

for survey lines in the symmetry planes of an HTI layer (Figure 1). If the CMP line 

is perpendicular to the symmetry axis, the incident and reflected rays are confined to 

the isotropy plane, and the NMO velocities of each wave are just equal to the corre- 

sponding vertical velocities. Therefore, here I consider the second vertical symmetry 

plane that contains the symmetry axis (the “symmetry” plane). 

The simplest way to obtain NMO velocities in the symmetry plane is to use the 

known NMO equations for vertical transverse isotropy (e.g., Thomsen, 1986) and the 

relations between the anisotropic parameters of HTI and VTI media given in the 

previous section. Alternatively, as shown in Appendix B, normal-moveout velocity 

can be obtained directly from the phase-velocity equations for horizontal transverse 

isotropy. Both approaches lead to the same expression for the NMO velocity of the 

P-wave valid for any strength of the anisotropy: 

  

§— 2 (1+ 4) 
Vamo [P—wave] = Vevert V 1+ 26) = Vevert 1+2 va. o.\f4 1 2 ’ 

(1 + 2e) (1 + 2) (27) 

in accordance with equation (1) and the analogy between VTI and HTI media outlined 
above; 6‘) is given by equation (20). 

Equation (27) can be rewritten using the P-wave velocity in the symmetry direc- 

tion Vpp as (Appendix B) 

Vamo [P—wave] = Vpo F _ 2e= 8) | (28) 
1+ 7 

As discussed in the previous section, for ¢ = 0 the P-wave phase and group 
velocity in the plane containing the symmetry axis are symmetric with respect to the 
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45-degree angle, and the NMO velocities in terms of 6 and 6‘Y) become identical to 
each other. 

Note that the expressions (27) and (28) for P-wave NMO velocity include not only 
the P-wave horizontal velocity Vpp and the anisotropy parameters ¢€ and 6, but also 

the shear-wave horizontal velocity Vso (contained in the parameter f), which seem 

to contadict the conclusion by Tsvankin (1995b) about the small influence of Vso on 
P-wave traveltimes. However, the velocity Vso contributes just to the term quadratic 

in the anisotropic coefficients « and 6 and, therefore, has only a small impact on the 

P-wave NMO velocity. 

For weak anisotropy (« < 1, 6 < 1), we can simplify equations (27) and (28) by 
retaining only the terms linear in € and 6: 

Vamo(P—wave) © Vpyer: (1 + 6) = Vpp(1+6—-€). (29) 

Equation (29) coincides with the expression given by Sena [1991, equation (A- 
10)], who calls the NMO velocity the “skewed” moveout velocity. Note that the 

corresponding equation (12a) in Thomsen (1988) is in error. 

Similarly, the exact NMO velocity for the wave S+ is given by 

2 Vamo [S-wave] = Vso 1 + 20) = Veo | 1+ ine . (30) 
¢ 

with o) from equation (23). Since for the S+—wave the velocities in the symmetry 
direction and in the perpendicular (isotropy) plane are identical, Vso in equation (30) 
represents both the vertical and horizontal velocity. 

As for P-waves, the S+—wave NMO velocities in VTI and HTI media with the 

same values of the Thomsen parameters coincide with each other for « = 0. Fur- 

thermore, the phase and group velocity of the wave S+ in any plane containing the 

symmetry axis are almost symmetric with respect to the 45-degree angle even for 

¢ #0. Indeed, in the limit of weak anisotropy oY) = o, and equation (30) reduces to 

Vamo [S*—wave] * Vgq (1 +0). (31) 

Equation (31) coincides with the weak-anisotropy approximation for the S'—wave 

NMO velocity in VTI media [equation (2)] for any values of €. If the S+—wave velocity 
anisotropy is not weak, the NMO velocities of S+ in VTI and HTI media with the 
same values of the Thomsen parameters are not equal but remain close to each other 

(in the symmetry plane). Note that equation (31) is equivalent to equation (12b) in 
Thomsen (1988) presented in a different form. 

For the S!l-wave, a 90-degree rotation of the symmetry axis is equivalent to inter- 
changing the elliptical axes, and the NMO velocity remains equal to the horizontal 
shear-wave velocity: 

10
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Vamo [S"—wave] = Voter: V1 + 21) = Veo - (32) 

Azimuthal dependence of NMO velocity 

Normal-moveout velocity in symmetry planes of any anisotropic medium can be 

studied using the equation of Tsvankin (1995a) derived under the assumption that 
the phase and group velocities of the reflected waves lie in the incidence plane. For 

a survey line over an HTI medium that is neither parallel nor perpendicular to the 

symmetry axis (Figure 3), the phase-velocity vectors may deviate from the incidence 

plane, thus making this equation inaccurate. A more general expression for NMO 

velocity that fully honors the 3—D behavior of the phase- and group-velocity vectors 

in HTI media is obtained in Appendix A: 

2 2 1+ va Vamo = Voert 3 7 1 wT? (33) oO Tr . V 

1+sin*a [# or 

where V(@) is the phase velocity as a function of the phase angle; the phase velocity 
and its second derivative should be evaluated at the vertical phase (and group) direc- 

tion. Equation (33) is valid for HTI models with any strength of the anisotropy and 
can be used for all three pure modes (P, S*, S!!). 

S R 
le X mJ 
  

CMP line 

  

Fic. 3. Common-midpoint reflections over a transversely isotropic layer with a hor- 
izontal axis of symmetry. The symmetry axis makes the angle a with the survey 
(CMP) line. As shown in Appendix A, the incident and reflected rays of pure modes 
lie in the incidence (sagittal) plane, while the corresponding phase-velocity vectors 
may deviate from the plane. 

Two special cases considered in the previous section correspond to the survey line 
parallel (a = 0) and perpendicular (a = 90°) to the symmetry axis. In the latter 

1]
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case (a = 90°), the incident and reflected rays lie in the isotropy plane, and the NNO 

velocity from equation (33) becomes equal to the vertical velocity, 

Vamo(@ = 90°) = Vaert . (34) 

If the survey line is confined to the symmetry plane (i.e., is parallel to the sym- 

metry axis) and a = 0, equation (33) reduces to 

1 dV 2 —\ = Vv? 
Vamo(@ —- 0) —_ Voert (1 + a) ’ (35) 

which is identical to NMO equation of Tsvankin (1995a) for the special case of a 
horizontal reflector. NMO velocity described by equation (35) has been discussed in 

detail for each wave type (P, S+, S'!) in the previous section. 

The most interesting and somewhat surprising feature of equation (33) is that the 

influence of anisotropy on NMO velocity is absorbed by a single term that we will 

denote as A: 

_1@V _ V2,(a = 0) A=—-—= 
V de? Veet 

—1, (36) 

Using equations (27), (30), and (32), we can identify A for different wave types as 

  

  

6—2e(1+4 
A[P—wave] = 26) = 2 $= 2145) ; (37) 

(1+ 2¢) (1+ 2) 

A[S+—wave] = 20'Y) = 2 ° oan (38) 
1+% 

I —2,) — 9 7 A [S"—wave] = 27 2 1427" (39) 

Equations (37)—(39) demonstrate that the azimuthal dependence of NMO velocity 
for horizontal transverse isotropy is governed by the Thomsen parameters of the 
equivalent VTI medium. In the weak-anisotropy approximation, the expressions for 

A can be linearized in the anisotropic parameters to give 

A[P—wave] = 2 (6 — 2e) , (40) 

A[S*+—wave] = 20, (41) 

A[S!—wave] = -27, (42) 

while equation (33) for NMO velocity becomes 

12
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2 
Vimo = V2,(1+ A cos?a). (43) 

Thus, normal-moveout velocity for horizontal transverse isotropy is a relatively 

simple function of three parameters: the vertical velocity, the azimuthal angle between 

the survey line and the symmetry axis, and the anisotropic term A. 

INVERSION OF NMO VELOCITY FOR HORIZONTALLY-LAYERED 
MEDIA 

The NMO equations given above can be used to invert the moveout velocitjes for 
the anisotropic parameters. One of the potential complications in this inversion is 

the distortions caused by nonhyperbolic moveout. Indeed, reflection moveout even 
in a homogeneous anisotropic medium is generally nonhyperbolic, and the moveout 

velocity on a finite-length spread may be different from the “zero-spread” NMO ve- 

locity (Hake et al., 1984). However, as shown by Tsvankin and Thomsen (1994) for 
horizontal reflectors beneath VTI media, deviations of P-wave moveout from hyper- 

bolic for conventional spreadlengths (equal to the distance between the CMP and the 

reflector) are small. SV-—wave moveout on these spreads is also close to hyperbolic 

for the most common, positive values of the difference « — 6 (Tsvankin and Thomsen, 

1994). Furthermore, the magnitude of nonhyperbolic moveout decreases with reflec- 

tor dip (Anderson and Tsvankin, 1995). These conclusions can be extended to the 
vertical plane in HTI media that contains the symmetry axis by using the equivalence 

between VTI and HTI media. Note that the S-wave moveout in this plane is purely 

hyperbolic, both for horizontal and dipping reflectors (Uren et al., 1990). Obviously, 

reflection moveouts of all three waves are purely hyperbolic on the survey line in the 

isotropy plane (a = 90°). Estimation of the magnitude of nonhyperbolic moveout 

outside symmetry planes requires a numerical study. 

Although the NMO equations derived in the previous section are valid for a single 

HTI layer, they can be applied in a straightforward fashion to certain types of more 

realistic vertically inhomogeneous models. Suppose the medium consists of a stack 
of vertically and horizontally transversely isotropic layers with the symmetry axis 

in HTI media pointing in either of two arbitrary but orthogonal directions. Then 

these directions will determine two vertical symmetry planes of this anisotropic model 

in which we can apply the generalized Dix equation presented by Alkhalifah and 

Tsvankin (1995). In the case of horizontal reflectors, this equation reduces to the 
standard Dix (1955) formula that allows one to obtain the NMO velocity for any layer 
from the NMO velocities for the reflections from the top and bottom of this layer. 

Thus, we can recover the single-layer NMO velocities in symmetry planes of VTI-HTI 

stratified media by the conventional Dix differentiation procedure. Although the Dix 

equation does not work exactly outside the symmetry planes, it can still be expected 

to provide a good approximation for weak and moderate azimuthal anisotropy. 

As mentioned above, in the case of a horizontal symmetry axis we can exploit the 

13



Tsvankin Moveout velocities for HTI media 

azimuthal dependence of reflection data by using NMO velocities measured on survey 

lines with different orientation (e.g., using 3-D surveys). Due to the fact that the 

influence of anisotropy in NMO equation (33) is concentrated in the single parameter 

A, it is sufficient to have three measurements of NMO velocity at different azimuthal 

angles for any wave type to recover the three unknowns, including the orientation 

of the symmetry axis (a, Vier, and A). Although A/2 is equal to the parameters of 
the equivalent VTI model (6), a), or y(Y) depending on the wave type), such an 

algorithm cannot be devised for vertical transverse isotropy; obviously, in VTI media 

moveout velocities do not vary with azimuth. As mentioned above, NMO velocities 

in VTI media are not sufficient to invert for the vertical velocities and anisotropic 

coefficients, even if both P and shear data are used. 

If the vertical velocity of one of the waves has been determined (say, Vpver: from 

well logs or check shots), then the parameter A for the P-wave and the angle a can 

be obtained from just two P-wave NMO velocities measured at different azimuths. 

Then a single NMO velocity for any other mode (say, S*) is sufficient to obtain the 
anisotropic parameter A for this wave since the vertical velocity (Vsi,er:) in this case 

can be found from Vp,.,; and the vertical P and S+ traveltimes. 

In another scenario, the orientation of the symmetry axis may be known, which is 

often the case for HTI reservoirs with the anisotropy caused by vertical cracks. For 

instance, the crack orientation that determines the direction of the symmetry axis 

can be obtained from shear-wave VSP’s. Then the NMO velocities in two azimuthal 

directions are sufficient to invert for the vertical velocity and the coefficient A. For 

instance, we may be able to obtain the vertical velocities by performing moveout 

analysis on the survey line normal to the symmetry axis [equation (34)]. Then the 

NMO velocities on a line with any other orientation make it possible to find the 

anisotropic parameter A. Finally, if both the axis orientation and the vertical velocity 

are known, a single value of NMO velocity (for instance, on the line parallel to the 

symmetry axis) can be inverted for the parameter A. 

Determination of Thomsen parameters 

To carry out seismic processing outside symmetry planes, we need to know the 

“generic” Thomsen parameters of the model (e, 6, y) that determine the phase and 
group velocities of all three waves as functions of the angle with the symmetry axis. 

Hence, the next question to be answered is what information about ¢, 6, and y can 

be obtained from the vertical velocities and the values of A recovered from moveout 

data. 

P-wave processing requires knowledge of the velocity Vpp and the anisotropic 

parameters «€ and 6. As shown above, P-wave NMO data can yield the vertical 

velocity Vpyere and 6”) = A/2 given by [equations (20) or (37)}: 

14



Tsvankin Moveout velocities for HTI media 

5 — 2 (1+ £) 
6M) = ; 

(1 + 2¢) (1+ 2) (44) 

For weak anisotropy, 6”) = 6 — 2e. Thus, P-wave data alone enable us to find an 

anisotropic coefficient close to 6 — 2¢. In the special case of ¢ = 0, discussed in more 

detail below, 6 is simply equal to 6%) and Vpo = Vpver:. In another special case of 

the known Vpp (e.g., from head waves or cross-hole tomography), the parameter € can 

be found using the vertical P-wave velocity. Alternatively, the presence of dipping 

events makes it possible to obtain e'Y) (and e) from P-wave NMO velocities. In 
this case, the symmetry-direction velocity Vpp can be found from Vp, and € using 

equation (24). Once € has been determined, 6‘) [equation (44)] is sufficient to resolve 
6 given an approximate value of the Vpo/Vso ratio (this ratio contributes only to the 
terms quadratic in the anisotropic parameters). 

By inverting S+—wave moveout data, we can obtain the vertical (and horizontal) 
S+—wave velocity Vs1,er: = Vso and the anisotropic term oY) = A/2 [equations (23) 
or (38)]: 

  (v) — _% 45 o $F (45) 

In the limit of weak anisotropy, 

V; 2 

OM xzo= (=*) (e—6). (46) 
Vso 

Assuming that S+—wave anisotropy is moderate and we have a good estimate of 

the Vpo/Vso ratio, we can use equation (46) to evaluate the difference € — 6. 

Although V,.,: and A are the only two medium parameters (except for the axis 

orientation) that can be obtained for any single wave type, we can combine, for 

instance, P and S+—waves to resolve the anisotropic coefficients individually. In fact, 

it is sufficient to find one of the vertical velocities since the second velocity can then 

be recovered from the ratio of the vertical P and S* traveltimes. The coefficients 

6”) and oY) [equations (44) and (45)], along with the vertical velocities Vpyer: and 
Votvert = Vso, are sufficient to resolve all four parameters responsible for P — S+ 

propagation (Vpo, Vso, €, and 6), as well as the reflector depth. Since Vso is already 

known, all we have to do is to substitute 

_ Ve vert Vp, = — vert. 
Po V1+2€ 

into equations (44) and (45) and solve them for ¢ and 6. It is clear that this inversion 
is stable because 5'Y) is close to 6 — 2€, while oY) provides an estimate of € — 6. 
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The fifth parameter, 7, is usually obtained for HTI media directly from the frac- 

tional difference between the vertical S+ and S'! velocities using the traveltimes of 

split shear waves at vertical incidence (e.g., Crampin, 1985; Thomsen, 1988): 

1 & 
—_ llvert —1 Y=5(°" (47) 

2 Vetvert 

The above results suggest an alternative way of recovering ¥ using just S!! moveout 

data. The azimuthal dependence of the S!l-wave NMO velocities can be inverted 

for yY) = A/2 and, consequently, for 7. If the symmetry direction is known, this 

inversion requires the S!|-wave NMO velocities on two lines with different orientation. 

In the simplest case of the lines parallel and perpendicular to the symmetry axis, 

1 (V2. (a= 90° 

v5 (ee -1). 8) 
Note that if S!! and S+ data are available, the ratio of the vertical shear-wave 

velocities can be obtained not only from the vertical traveltimes, but also from the 

respective NMO velocities. Then, 7 can be calculated from equation (47). 

Inversion for crack density 

It is believed that the most common physical reason for horizontal transverse 

isotropy is the presence of parallel vertical cracks (fractures) embedded in an isotropic 

medium (Crampin, 1985). Thus, the question to be answered next is whether we can 

obtain reliable information about the properties of crack systems from moveout data. 

The parameter of most interest in the characterization of fractured reservoirs is the 

crack density (D,) that is proportional to the product of the number of cracks per unit 

volume and their mean cubed diameter. Although all three anisotropic coefficients 
(e, 6, y) are proportional to D,, the parameter most directly related to crack density 

is y. For parallel, penny-shaped cracks distributed in a porous isotropic rock, 7 is 

given by (Thomsen, 1995) 

81-—P 
=-—— D Y 3 2 _ P cy 

where P is the Poisson’s ratio of the dry isotropic porous medium. 

(49) 

It is easy to see that for plausible values of the Poisson’s ratio the coefficient 
8(1 — P)/[3(2 — P)] is close to unity, and y ~ D,. Therefore, measurements of 
provide a good direct estimate of the crack density. The most conventional way to 

recover y is to use the traveltimes of the split shear waves at vertical incidence, if 

both shear modes are recorded. As suggested above, 7 can also be obtained from 

S'-wave moveout data; the wave S+ in this case is not needed at all. 
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The relation between ¢, 6, and the crack density is complicated by such quantities 

as the incompressibility of the solid grains and the fluid in the cracks, as well as by 

the so-called “fluid influence factor” (Thomsen, 1995). This makes the inversion of 
e and 6 for the crack density an ambiguous procedure, unless detailed information 

about the physical properties of the rock is available. Since the moveouts of P and 

S+_waves are controlled by € and 6 while being independent of 7, it seems that there 

is no straighforward way to invert NMO velocities of the P- and S+—waves for the 
crack density. f 

However, the main difference between general transverse isotropy and TI media 

due to a system of thin parallel cracks is that in the latter case elastic constants satisfy 

the following equation that reduces the number of independent stiffness coefficients 

from five to four (Schoenberg and Sayers, 1995; Thomsen, 1995): 

€11€33 — Cys = 2ce6 (C13 + €33) , (50) 

with the cracks perpendicular to the x3 axis. Replacing the stiffness coefficients in 
equation (50) by the Thomsen parameters from equations (5)—(9) yields 

y= Vio 779 
~ 2 26\ ’ 2Vs (1+ /1 + 2) 

where f is given by equation (22). Other constraints for such a medium require that 

e>Oand7>0. 

Replacing the generic Thomsen parameters with the coefficients of the equivalent 

VTI medium using equations (19), (20), (24), and (25), we find 

D. &   (51) 

vert D V2 eV) [2 —1/f] — 6) 
cw y= ' 

2Veivert 1+ 2eV)/fM) + 9/1 +26) / FM) 

with f™ =1- Voi vert! Ve vert: 

Equation (52) expresses and the crack density through the parameters of the 
equivalent VTI medium that we can determine from P — S+ moveout data. If €), 
6) and Vpvert /Vstvere have been found from NMO velocities of the P- and S+— 

waves using the algorithm outlined above, the parameter -y and, consequently, the 

crack density D, can be calculated from equation (52). 

(52) 

P-wave moveout data, combined with an approximate value of the ratio of the 

vertical velocities (Vpver:/Vgivert), are sufficient to estimate the crack density if the 
P-wave velocity along the symmetry direction (Vpo) is known. Then Vpyer: and 6°) 

can be found from the P-wave NMO velocity, while e) is given by 

2 
Vv) 1 (Veo _ 5). 

2 Vivert 
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Below, I suggest an alternative way of estimating e'Y) using the dip-dependence 

of P-wave NMO velocity. 

The inversion of P—wave data for the crack density becomes particularly simple in 

the special case of the equal vertical and horizontal (along the symmetry direction) 

velocities of the P-wave (e = e'Y) = 0) that corresponds to negligible equant porosity 

and “very thin” cracks (for quantitative estimates, see Thomsen, 1995). Such a model 

may be typical, for instance, for fractured coals that are of primary importance in 

methane production. If e'Y) = 0, equation (52) reduces to 

Virvert —6) 
D. Sy= . 

1 Wise 1+ fl + 26) / fF /f 
(53) 

Since the parameter 6Y) can be obtained from P-wave NMO velocity, P-wave 

data in this case are sufficient to obtain the crack density provided an approximate 

value of the Vpyer:/Vgiyer: Tatio is known. The combination of P and S+ data may 

be necessary only to get a better estimate of Vever:/Vstvert, but y, as determined by 

equation (53), is not too sensitive to realistic errors in this parameter. The assumption 

about € = e'Y) = 0, however, cannot be verified unless eV) is recovered. 

In the limit of weak anisotropy, equation (52) becomes 

2 

D.wya Port |f(o__!_\_ sy (54) 
owt 402 FW) 

Stoert 

If Vevert/Vstvert = 2, equation (54) further simplifies to 

D. © 7 = 0.67) — 6™) , (55) 

Equation (55) suggests that for weakly anisotropic HTI models the parameter 7 
(and the crack density) is close to the difference between ¢'Y) and 6”). As demon- 
strated below, this difference can be evaluated using the dip-dependence of the P- 
wave NMO velocity. Also, y can be roughly estimated using just S+ NMO velocity 

that provides the parameter oY) = V2. 2.4/Ves yen (EY) — 6). 

In terms of the generic Thomsen parameters, the weak-anisotropy approximation 

for 7 is given by [see equation (51)] 

  
V2 € 

D. & = PO -- 

= 42, (; 8). (66) 
in agreement with Thomsen (1995). Since 7 is non-negative, it is clear from equa- 

tion (56) that the difference between € and 6 for TI media due to parallel cracks is 
typically positive. 
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NMO VELOCITY FROM DIPPING REFLECTORS 

Normal-moveout velocity from both horizontal and dipping reflectors in symme- 

try planes of any homogeneous anisotropic medium, including horizontal transverse 

isotropy, can be studied using the following equation given by Tsvankin (1995a): 

/ _1 #V 
Vamo(?) = V(¢) Vite (57) 

= tangqV? cos ¢ 1— wes 

where V is phase velocity, 9 is the phase angle with vertical, and ¢ is the dip angle 

of the reflector; the derivatives of phase velocity are evaluated at the dip ¢. Equa- 

tion (57) is strictly valid for 2-D wave propagation, with phase and group velocities 
of the reflected waves confined to the incidence plane. This implies that the incidence 

plane should represent both a symmetry plane of the medium and the dip plane of 

the reflector. 

Equation (57) is applied below to the vertical symmetry plane of HTI media that 
contains the symmetry axis (here called simply the symmetry plane; Figure 1). The 

dip-moveout signature in the isotropy plane is trivial because velocity is independent 

of propagation angle. For any other survey (CMP) line making an arbitrary angle with 

the symmetry axis, equation (57) can be used only for weak azimuthal anisotropy. 

To comply with the assumptions behind equation (57), the incidence plane is taken 

to be the dip plane of the reflector, i.e., the strike of the reflector is perpendicular to 

the symmetry axis. 

For homogeneous, isotropic media equation (57) reduces to the simple cosine-of- 

dip relationship (Levin, 1971): 

Vnmo(0) 
Vamo() = “cos é (58) 

Velocity variations with angle in anisotropic media [represented by the derivatives 

in equation (57)] lead to deviations from cosine-of-dip formula (58). Therefore, NYO 
velocities from dipping reflectors can provide useful information about anisotropy 

for the inversion procedure (Alkhalifah and Tsvankin, 1995). Description of dip- 
dependent NMO velocity is also important in developing dip-moveout (DMO) algo- 

rithms, as well as other seismic processing methods for anisotropic media (Anderson 

and Tsvankin, 1995). 

NMO velocity as a function of dip angle 

The equivalence between vertical and horizontal transverse isotropy discussed 

above implies that the results for VTI media can be directly used in the symme- 

try plane of HTI media that contains the symmetry axis. Here, however, we need to 

study the dip-dependence of NMO velocity for typical values of the generic Thomsen 
parameters ¢€, 6, and +. 
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To understand the influence of the anisotropic parameters on NMO velocity, it 

is convenient to apply the weak-anisotropy approximation to equation (57). In the 
limit of weak anisotropy, P-wave NMO velocity for vertical transverse isotropy can 

be expressed through phase velocity as (Tsvankin, 1995a) 

Vano(@) 08(8) = Vana(0) { FP ft + 2(€0 — 6%) sin? (1 + 2008" a) (59) 

Equation (59) is structured to show the deviation of the NMO velocity from the 
isotropic cosine-of-dip expression (58). Using equations (19) and (20), we find that 
for weak anisotropy 

&) 6M) =¢-6, 

and equation (59) retains the same form if expressed through € and 6. However, the 
angle dependence of the P-wave phase velocity Vp(¢) in equation (59) is substantially 

different in models with horizontal and vertical orientations of the symmetry axis. 

Indeed, in HTI media the horizontal velocity is smaller than the vertical velocity 

(e) <0), while in VTI media the opposite is true. 

After being fully linearized in the anisotropic parameters, equation (59) becomes 

(Tsvankin, 1995a) 

Vamo(¢) cos $ Virns(0) =1+6™ sin? 6 + 3(e — 6) sin? ¢ (2 — sin? 4). (60) 

Substituting the expressions for e'Y) and 6) from equations (19) and (20), we 
find an equivalent weak-anisotropy approximation for horizontal transverse isotropy: 

Vamo(?) cos 
Vamo(0) 

Again, equations for VTI (60) and HTI (61) media are similar to each other, 
with the dip-dependence of NMO velocity for both models mostly influenced by the 

second anisotropic term that contains the difference « — 6. As discussed above, ¢€ — 6 

is typically positive for HTI media (as for vertical transverse isotropy), and we can 

expect the cosine-of-dip corrected NMO velocity to increase with dip. However, since 

the trigonometric coefficient multiplied with « — 6 is smaller for HTI than for VTI 
media, the individual contribution of 6 in equation (61) is more pronounced than 
in equation (60). Also note that the signs of the 6 term in equations (60) and (61) 
are opposite. These conclusions are further illustrated by the numerical examples 

shown in Figures 4 and 5. For typical positive values of « — 6 the cosine-of-dip 
corrected NMO velocity increases with dip much slower than in VTI media with the 

= 1—6sin’ $ + 3(e— 6) sin? (5 sin? 4). (61) 
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same values of the anisotropic parameters (Tsvankin, 1995a). Therefore, for models 
with the same positive « — 6, the accuracy of the isotropic cosine-of-dip relationship 

is higher in HTI media than for vertical transverse isotropy. Although the weak- 

anisotropy approximation in Figure 4 is close to the exact NMO velocity for small 

and moderate values of € and 6, the weak-anisotropy formula tends to overstate the 

influence of the anisotropy. 
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Fic. 4. The dip-dependence of P-wave normal-moveout velocity in the symmetry 
plane of HTI media that contains the symmetry axis. NMO velocity is multiplied 
with the cosine of the dip angle and divided by the exact Vamo(0) to show the error 
in the isotropic equation (58) caused by the anisotropy. The solid curve is the exact 
NMO velocity [equation (57)]; the dashed curve is the weak-anisotropy approximation 
from equation (61). 

Also, in contrast with the results for vertical transverse isotropy described by 

Tsvankin (1995a), the dependence of P-wave NMO velocity on the dip angle is much 
less controlled by the difference between € and 6 (Figure 5). This result was explained 
above in terms of the weak-anisotropy approximation; the difference between the 

exact and weak-anisotropy NMO velocity leads to further separation between the 

curves corresponding to models with the same value of € — 6. 

For the wave S+, the weak-anisotropy approximation can be obtained from equa- 
tion (61) by making the substitutions 6 = o and ¢ = 0: 
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Fic. 5. Cosine-of-dip corrected P-wave NMO velocity calculated from equation (57). 
The curves on the left plot correspond to models with e-6=0.1: e=0, 6=-0.1 {black 
curve); e=0.1, 6=0 (gray curve); e=0.2, 6=0.1 (dashed curve). On the right plot, 
e-§=0.2: €=0.1, 6=-0.1 (black); e=0.2, 5=0 (gray); e=0.3, 6=0.1 (dashed). 

Vamo(¢) cos $ 
Vamo(0) 

Since a is typically positive (both for VTI and HTI media), we can expect the cosine- 

of-dip corrected S+—wave NMO velocity to decrease with dip. 

[S+] = 1 —5esin? $+ 30 sin‘ ¢. (62) 

In the case of the wave Sl, the 90-degree rotation of the axis is equivalent to inter- 

changing the elliptical axes, and the general NMO equation for elliptical anisotropy 

(Tsvankin, 1995a) holds in HTI media: 

Vamo(¢) cos @ ly — Vou (?) 

Vamo(0) IS= Vottvert (68) 

Equation (63) shows that for elliptical anisotropy the error in the cosine-of-dip 

dependence is determined directly by the phase-velocity variation. Substituting the 

phase-velocity function V<(@) for a horizontal symmetry axis, we obtain 

Vamo() COS » oy) |g 2ysin? 

Vemo(0) f= \ 14 2y 8) 
Note that the dip-dependence of the S!|-wave NMO velocity is exactly the same as 

that for the P-wave in elliptically anisotropic media (e.g., the model with e = 6 = 0.2 
in Figure 4). 

Parameter 7 and time processing in HTI media 

For purposes of seismic processing it is more convenient to treat NMO velocity 
as a function of the ray parameter corresponding to zero-offset reflection. Then, as 
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shown by Alkhalifah and Tsvankin (1995), the P-wave NMO velocity in VTI media 
is governed by just two parameters: the zero-dip NMO velocity Viamo(0) [equation (1)] 
and the anisotropic coefficient 7‘): 

(Vv) _ 6) E n™ = 
~ 1426) * (65) 

Both parameters (Vamo(0) and 7)) can be reliably recovered from P-wave sur- 
face data using NMO velocities and ray parameters for two distinctly different dips. 

In VTI media, the parameters Vamo(0) and 7) are sufficient to perform all time- 

related processing steps including NMO correction, dip-moveout removal, prestack 

and poststack time migration (Alkhalifah and Tsvankin, 1995). 

In essence, 7'Y) is responsible for the influence of transverse isotropy on P-wave 

NMO velocity and time-related processing in general. For elliptical anisotropy, 7) = 

0, and NMO equation (57) reduces to the well-known expression valid for isotropic 
media: 

Vamo(0) 
Vamo P?) = eaowWw"=. 

( V 1— pPPV2 no(0) 

p is the ray parameter. The contribution of anisotropy in equation (66) is hidden 

in the values of the zero-dip NMO velocity Vimo(0) and the ray parameter p. All 

isotropic time-processing methods remain valid for elliptical models, irrespective of 

the strength of velocity anisotropy. 

(66) 

Although wave propagation in the symmetry plane of HTI media that contains the 

symmetry axis can be described using VTI equations, the parameters of the equiva- 

lent VTI medium are different from those conventionally used for vertical transverse 

isotropy. For instance, since in HTI media the vertical P-wave velocity is higher than 

the horizontal velocity, the parameter e'Y) of the equivalent VTI medium is negative, 

an extremely unusual case for vertical transverse isotropy. 

Therefore, we have to check whether the conclusions by Alkhalifah and Tsvankin 

(1995) hold for the uncommon VTI models corresponding to HTI media with typical 

values of « and 6. The parameter 7”) can be expressed through ¢ and 6 using 
equations (19) and (20): 

  

(Vv) _ e—6 1 _ 1 

= %(1-1/fy 7 (1-1/f) * (67) 1426 1- xt) 1 = 2 Ue 

Figure 6a shows that P-wave NMO velocities for HTI models that have the same 
value of 7'Y) practically coincide with each other. This proves that the P-wave 

NMO velocity as a function of the ray parameter is entirely controlled by the zero- 

dip value Vamo(0) and the parameter 7'Y), whether the medium has a vertical or 
horizontal symmetry axis. Also, as demonstrated by Figure 6b, the resolution in 7 
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is high enough for a stable recovery of this parameter from the dip-dependence of 

P-wave NMO velocity. We conclude that time-related processing of P-wave data in 

the symmetry plane that contains the symmetry axis can be carried out using the 

algorithms developed for vertical transverse isotropy (e.g., Alkhalifah and Tsvankin, 

1995). 
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Fic. 6. P-wave normal-moveout velocity in the symmetry plane of HTI media calcu- 
lated from equation (57) and normalized by the expression for isotropic media (66). 

The dip angles range between 0 and 70 degrees. (a) models with the same 7‘Y)=0.2: 
e=0.1, 6=—0.0838 (solid); e=0.2, 6=—0.0248 (gray); «=0.3, 6=0.0343 (dashed) — the 
curves practically coincide with each other. The ratio Vs9/Vpp=0.55. (b) models with 
different 7): n(Y)=0.1 (solid); n)=0.2 (gray); n/Y)=0.3 (dashed). 

Equation (67) indicates that despite the significant differences in the values of the 
Thomsen parameters for HTI media and the equivalent VTI media, the parameter 7 

for both models remains almost the same. Indeed, Figure 7 shows the P-wave NMO- 

velocity curves for HTI models with a fixed value of n = 0.2 instead of the fixed 7‘) 

in Figure 6. The corresponding 7) changes from 0.182 to 0.163, which causes some 

separation between the curves in Figure 7a. Nevertheless, the NMO velocities for 

models with the same 7 remain sufficiently close to each other. 

Thus, if we apply VTI inversion algorithms to the dip-dependence of P-wave 

NMO velocity in the symmetry plane of HTI media that contains the symmetry axis, 

we get the value of n'Y) = 7. Alternatively, the parameter 7”) can also be obtained 
from the P—wave velocity in the symmetry direction (that may be known from head 

waves and/or cross-hole tomography) and the zero-dip NMO velocity without using 

dipping events (Alkhalifah and Tsvankin, 1995). 

The value of 7‘) adds new information to the inversion procedure described in the 
previous section and makes it possible to estimate the crack density just from P-wave 

moveout data. As discussed above, the P-wave vertical velocity and the parameter 

6”) can be found using the P-wave NMO velocity from horizontal reflectors. The 
presence of dipping events makes it possible to recover e'Y) from the parameter 7). 
Then, given a rough estimate of the ratio of the P-to-S+ vertical velocities, the crack 
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Fic. 7. P-wave moveout velocity calculated from equation (57) and normalized by the 
expression for isotropic media (66). The dip angles range between 0 and 70 degrees. 
(a) models with the same 7=0.2: e=0.1, 6=-0.071 (solid); e=0.2, 65=0 (gray); «=0.3, 
6=0.071 (dashed). (b) models with different 7: n=0.1 (solid); n=0.2 (gray); 7=0.3 
(dashed). 

density can be calculated from equation (52). Another way to determine 6‘) and eV) 

is to combine the zero-dip NMO velocity and parameter 7{Y) obtained from P-wave 
data with the S+—wave (or P — S+—wave) NMO velocity from a horizontal reflector. 

Even if no other data are available, just the value of n'Y) can be used to make a 

crude estimate of the crack density. First of all, in the special case of « = eV) = 0, 

the parameter 7Y) is sufficient to obtain 6) and compute the crack density from 
equation (53). In the more general case of non-zero €, we can represent y in the 
weak-anisotropy approximation as [equation (55)] 

V2 1 De. y= Prert (V) — —~]) —§6™) | ~ 0.67e) — 6™) 

7 4 Ve. vert f ? f™) 0 Ore , 

which is close to 'Y) ~ e) — 6), Obviously, the accuracy of such an estimate can 
be acceptable only for relatively small values of 6”) and, especially, e). Also, the 

term 2 —1/f) becomes closer to unity for higher Vpyert/Vs.ver: Tatios. If 6) is 
known to be small, the conversion of 7'V) into the crack density can be improved by 
multiplying 7) with (2 —1/f™): 

1 1 
D. ~y [small 5] = (VY) (2 - 7) = n) (2 _ “ti . 

This approximate way of estimating the crack density works better for substan- 

tially different e) and 6) (relatively large n‘Y)) than for media close to elliptically 

anisotropic with almost equal values of €'”) and 6), 
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DISCUSSION AND CONCLUSIONS 

Horizontal transverse isotropy is usually caused by the presence of vertical cracks 

(fractures) in an otherwise isotropic matrix. The parameter of crack systems of most 
interest in exploration is the crack density that is close to the fractional difference 

between the velocities of split shear waves at vertical incidence (Thomsen’s coefficient 
). The shear-wave methods, developed extensively during the last decade, are de- 

signed to obtain ¥ directly from the shear-wave traveltimes and reflection amplitudes. 

This technology, however, has drawbacks associated with the cost of multicomponent 

surveys and the need to acquire high-quality shear data suitable for reliable polar- 

ization analysis. Also, shear-wave splitting yields an estimate of a single anisotropic 

parameter (7), while the processing of P-wave data in HTI media requires knowledge 

of the other two coefficients (€ and 6). 

Here, I have suggested several ways of estimating the anisotropic parameters by 

inverting normal-moveout information. The methodology is based on a new exact 
equation for NMO velocities from horizontal reflectors that is valid for any direction 

of the survey line with respect to the axis of symmetry. The influence of anisotropy on 

the azimuthally-dependent NMO velocity is absorbed by a single parameter responsi- 

ble for normal moveout in the plane that contains the symmetry axis. The other two 

parameters in the NMO equation include the vertical velocity and the angle between 

the symmetry plane and the survey line. Therefore, three moveout measurements 

at different azimuthal angles can be inverted for the three unknowns or, in the case 

when the vertical velocity is known, two NMO velocities can be used to obtain the 

orientation of the symmetry axis and the effective anisotropic parameter. 

This algorithm opens up the possibility of gaining information about the true ver- 

tical velocity (hence the reflector depth) and the principal directions of the anisotropy 

from 3-D P-wave surveys without using converted and shear modes. On the other 
hand, if shear data are available, the symmetry direction can be determined from 

S-wave polarizations, which simplifies the inversion of P-wave data for the vertical 

velocity and anisotropy. In general, it is highly beneficial to combine different types 

of data, such as moveout velocities, amplitudes (e.g., the azimuthal dependence of 

AVO response), and polarizations of P and shear waves. 

The simplest way of inverting normal-moveout velocities for the crack density is 

to use the SH--wave NMO velocity on the lines parallel and perpendicular to the 

symmetry axis. However, it is also possible to infer the crack density from P- and 

S+—wave moveout data. By using a constraint on the elastic constants of a medium 

with a system of parallel cracks, the crack density can be related to the parameters 
that can be obtained from P-wave and S+—wave NMO velocities. P-wave normal 

moveout from horizontal reflectors is sufficient to estimate the crack density only in 

the special case of € = 0 that corresponds to negligible equant porosity and “very thin” 

cracks. This model may be relevant for coalbed methane plays with the production 
from low-porosity fractured coals. In the more general case of non-zero €, P—wave 
NMO velocity from horizontal reflectors can be supplemented with moveout from 
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dipping events or the velocity in the symmetry direction (obtained from cross-hole 

tomography or head waves) to evaluate the crack density. Although the equation for 

the crack density includes the ratio of the P-to—S+ vertical velocities that cannot be 

obtained from P-wave data, the influence of the realistic errors in the velocity ratio 

is not that significant. The main application of this P-wave inversion algorithm is to 

identify pronounced anomalies of the crack density corresponding to “sweet spots” in 

fractured reservoirs. Another way to carry out the inversion for the crack density is to 

combine P— and S+—wave NMO velocities from horizontal reflectors. The Thomsen’s 

anisotropic coefficients and the crack density can be obtained from P and S+ moveout 
in the single symmetry plane normal to the cracks if one of the vertical velocities is 

available. 

While this work provides an analytic basis for moveout inversion in azimuthally 

anisotropic media, implementation of the algorithms outlined above may encounter 

some practical difficulties. The accuracy of the Dix differentiation, needed to obtain 

the NMO velocity in any individual layer, becomes inadequate for thin layers. For 

reservoirs with a relatively small thickness, the azimuthal variation of the reflection 

coefficient may be a more reliable diagnostic of azimuthal anisotropy. Also, the in- 

fluence of vertical transverse isotropy (e.g., due to thin bedding) distorts the NMO 

equations derived for HTI media. Combination of vertical and horizontal transverse 

isotropy leads to a medium with orthorhombic symmetry that requires a special treat- 

ment not discussed here. If the azimuthal velocity variations in orthorhombic media 

are caused by vertical cracks, the difference in the NMO velocities in the two vertical 

symmetry planes can still be related to the crack density. 

Wave propagation in the vertical symmetry planes of HTI media can be described 

using either isotropic equations (for the plane normal to the symmetry axis) or the 

formalism developed for vertical transverse isotropy (for the plane that contains the 

symmetry axis). In the latter plane, two different “equivalent” VTI models should be 

used, one responsible for P — S+—waves and the other — for the wave S!!. Time-related 

processing of P—waves in the plane containing the symmetry axis is governed by the 

zero-dip NMO velocity Vamo(0) and the parameter 7V) introduced by Alkhalifah and 
Tsvankin (1995) for vertical transverse isotropy. Although the values of the Thomsen 

parameters of the “equivalent” VTI medium are extremely uncommon for vertical 

transverse isotropy (e.g., e'Y) is negative), time-related processing of P—wave data can 

still be performed by means of NMO, DMO, and migration algorithms developed for 

vertical transverse isotropy (e.g., Alkhalifah and Tsvankin, 1995). The anisotropic 
parameters recovered from moveout data make it possible to process data in off- 

symmetry planes as well. However, this processing cannot be performed without a 

proper treatment of the 3—-D relation between phase and group velocities, which is 

not accounted for by VTI algorithms. 

Although the moveout equation derived here is limited to horizontal transverse 
isotropy, the same approach can be used to study the azimuthal dependence of NNO 

velocities from both horizontal and dipping reflectors in more complicated azimuthally 
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anisotropic media without performing ray tracing. 
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APPENDIX A: AZIMUTHALLY-DEPENDENT NMO VELOCITY IN 
HTI MEDIA 

Here, the approach suggested by Tsvankin (1995a) for moveout analysis in sym- 

metry planes of anisotropic models is extended to an arbitary incidence plane in 

transversely isotropic media with a horizontal symmetry axis. Suppose the symme- 

try axis makes the angle a with the common-midpoint (CMP) line (Figure A-1). 
Normal-moveout (NMO) velocity is defined on CMP gathers as 

— tim 12) 
~ B33 ae)’ 

where z is the source-receiver offset and t is the two-way traveltime. 

V2 
nmo (A-1) 

The derivation below is limited to the relatively simple case of horizontal reflectors, 

but the same approach can be used to find NMO velocity for reflections from dipping 

interfaces. Since a horizontal reflector represents a symmetry plane in HTI media, the 

group-velocity (ray) vector of any pure (non-converted) reflected wave is the mirror 

image of the incident ray with respect to the horizontal plane. This means that the 
incident and reflected rays (SO and OR in Figure A-1), are confined to the incidence 
(sagittal) plane, even if this plane is not a plane of symmetry. Furthermore, since the 

incident and reflected rays lie in the incidence plane and make the same angle with 

the reflector, they also make the same angle with vertical, and there is no reflection 

point dispersal on CMP gathers. However, the phase-velocity vectors of the incident 

and reflected waves may deviate from the incidence plane, while still being symmetric 

with respect to the reflector. 

NMO velocity for a horizontally homogeneous medium above the reflector is con- 

venient to evaluate using the equation given by Hale et al. (1992): 
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CMP line   

  

  

Fic. A-1. Geometry of the group- and phase-velocity vectors for reflected waves in 
HTI media. The incident (SO) and reflected (OR) group-velocity vectors (rays) are 
confined to the incidence plane. The phase-velocity vector (direction OD) correspond- 
ing to reflected ray OR lies in the plane formed by OR and the axis of symmetry. 
Triangle RCB defines the plane normal to the symmetry axis. 

2 d (dt\|" 
Virno = fH si (5) 5 (A-2) 

where h = 2/2 is half the source-receiver offset. tg is the two-way traveltime along the 

zero-offset ray, and t is the one-way traveltime from the zero-offset reflection point to 

the receiver. In the case of a horizontal reflector beneath HTI media, both the phase- 

and group-velocity (ray) vectors of the zero-offset reflection are vertical. Note that 

the zero-offset ray is not necessarily vertical for other azimuthally anisotropic models, 

even for horizontal reflectors. 

Equation (A-2) was derived under the assumption that the specular reflection 
point does not change with offset. As discussed above, this assumption is satisfied 
for our model; moreover, reflection point dispersal has no influence on NMO velocity 

because it contributes only to the quartic and higher-order terms of the traveltime 
series (Hubral and Krey, 1980, Appendix D; Tsvankin, 1995a). 

Since the derivative dt/dh represents the apparent slowness on the CMP gather, 
it is equal to the projection of the slowness vector on the CMP line: 

dt 
Ph = Gh? 

and the NMO velocity [equation (A-2)] can be rewritten as 

30



Tsvankin Moveout velocities for HTI media 

2 dh 
V2 = — lim —, (A-3) 

tg h-0 dpp, 

Equation (A-3) remains valid for the case when the rays, as well as the slowness 

vectors of the incident and reflected waves, diverge from the incidence plane. Thus, 
it can be applied to much more complicated problems than the one considered here. 

Introducing the group angle ( in the incidence plane (Figure A-1) and substituting 
h = zo tan B and 2 = Voert to/2 (Vuert is the vertical velocity) yields 

y2 
nmo —_ 

  (A-4) 

It is convenient to represent @ and p, as functions of the phase angle 6 with 

the symmetry axis (Figure A-1). Note that the phase-velocity vector in transversely 

isotropic media always lies in the plane formed by the symmetry axis and the group- 

velocity vector. Equation (A-4) then becomes 

. dtanB (dp, 2 _ ae aeh . 
Vimo = Vuert jim, do ( db . (A 5) 

Next, it is necessary to estimate both derivatives in equation (A-5). From simple 

trigonometry (Figure A-1), 

  

where wy is the group angle of ray OR with the symmetry axis. Then 

tan 8 = tt (A-6) 
tan w 1 — sny¢ 

The group angle w can be expressed through the phase angle @ and phase velocity 

V(@) as (Thomsen, 1986) 

tand+ i 
tan wy = mba . (A-7) 

1 a 
  

Differentiating tan ~ with respect to 6 yields (Tsvankin, 1995a) 

  

dtany _ 1+i¢¥ (A-8) 

dé 7 an@ dV \2 cos? 6 (1 ~- tan o dt) 
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Using equations (A-6) and (A-8), we obtain the first derivative in equation (A-5): 

dtan B 1 ( 1 1 ‘a 
    (@=y =90°) =— + V de (A-9) 

dé cos a@ 

with the anisotropic term tay to be evaluated at 6 = 90°. 

Now we have to find the relation between the projection of the slowness vector on 

the CMP line (pp) and the phase angle 0. The slowness vector (which is parallel to 
OD in Figure A-1) can be decomposed into two vectors parallel to sides OC and CD 

of triangle OCD. Taking into account that 

tan 2 sina tan a 
cos(< RCB) = = , 

y1 +tan?@sin?q taney 

and projecting each of the two components on the CMP line, we get 

1 
Pr=F (cos@ cosa + sin@ sina tana/ tan) , (A-10) 

with tan ~ given by equation (A-7). 

Evaluating the derivative of equation (A-10) with respect to 6 yields 

sin? a d?V (+4 7 x) (A-11) dp, 
=< = 6 = = ‘y= 

dé ( v = 90°) V cosa 
    

Finally, we obtain NMO velocity by substituting equations (A-9) and (A-11) into 
equation (A-5): 

  

nmo ~— ” vert 1 +sin?a (par ’ 

  

where both the phase velocity V and its second derivative should be evaluated at the 
phase angle 6 = 90°. 

APPENDIX B: NMO VELOCITY ALONG THE SYMMETRY 
DIRECTION 

Here, the P-wave normal-moveout velocity on a CMP gather parallel to the sym- 

metry axis is derived directly from the phase-velocity equation, without using the 

analogy between vertical and horizontal transverse isotropy discussed in the main 
text. If the symmetry direction is parallel to the CMP line (a = 0), equation (A-12) 
reduces to 

1aV 2 _ 172 _ _ 
Vimo ™ Voert ( + V do2 . (B 1) 
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Since the term Lay should be calculated at vertical incidence (9 = 90°), equa- 
tion (B-1) coincides with NMO formula (57) of Tsvankin (1995a) adapted for hori- 
zontal reflectors. To evaluate NMO velocity (B-1) for the P-wave, we use the exact 
expression for P-wave phase velocity in Thomsen notation given by Tsvankin (1995b): 

  

  

  

v?(6) 29 f VA, = 1+esin 0-5 

+L | (1+ 2eantey” =e AI cost (B-2) 

where 

f=1 — Vgo/Veo » 

Vpo and Vso are the the P- and S-wave velocities respectively in the symmetry 

(horizontal) direction. 

Differentiating Vp(6@) from equation (B-2) twice with respect to 6, we find 

V 2V po e—6 
** (6 =90°) =— sro) B-3 
aoe 9 = 90") V1 + de “TT 4 (B-3) 

The P-wave vertical velocity for horizontal transverse isotropy is given by 

Vevert as Vpo Vv 1 + 2€. (B-4) 

  

Substitution of equations (B-4) and (B-3) into NMO expression (B-1) yields 

Vamo(P — wave) = Vpo . _ 2le ~9) . (B-5) 
1+ 7 
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